Building classification trees using the total uncertainty criterion
نویسندگان
چکیده
منابع مشابه
Building classification trees using the total uncertainty criterion
We present an application of the measure of total uncertainty on convex sets of probability distributions, also called credal sets, to the construction of classification trees. In these classification trees the probabilities of the classes in each one of its leaves is estimated by using the imprecise Dirichlet model. In this way, smaller samples give rise to wider probability intervals. Branchi...
متن کاملImproving Chernoff criterion for classification by using the filled function
Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...
متن کاملCompleting an Uncertainty Criterion of Classification
We present a variation of a method of classification based in uncertainty on credal set. Similarly to its origin it use the imprecise Dirichlet model to create the credal set and the same uncertainty measures. It take into account sets of two variables to reduce the uncertainty and to seek the direct relations between the variables in the data base and the variable to be classified. The success...
متن کاملA Proposed Method to Handle Classification Uncertainty Using Decision Trees
A novel method is proposed in this paper to handle the classification uncertainty using decision tree classifiers. The algorithm presented here extends the decision tree framework to give the ability of measuring the confidence of the classification. Using this algorithm a certain number of the input samples are rejected as “risky points” in order to obtain a smaller misclassification rate on t...
متن کاملClassification Using Decision Trees
Data mining term is mainly used for the specific set of six activities namely Classification, Estimation, Prediction, Affinity grouping or Association rules, Clustering, Description and Visualization. The first three tasks classification, estimation and prediction are all examples of directed data mining or supervised learning. Decision Tree (DT) is one of the most popular choices for learning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Intelligent Systems
سال: 2003
ISSN: 0884-8173
DOI: 10.1002/int.10143